An Orthodontic Challenge.
Juvenile Rheumatoid Arthritis: Examination Protocol

Wilma Alexandre Simões, DDS, MS

Aim: Juvenile rheumatoid arthritis is a chronic systemic disease with poorly understood treatment. This article suggests a specific examination protocol for the assessment of the disease status and for the treatment management when unloading the temporomandibular joints. Methods: Depending on the onset and the exacerbation and remission periods that occur during growth, a great number of signs and symptoms are found in the stomatognathic system, including functional limitation, anterior open bite, and broken downward protrusion of the jaw pathway caused by articular and/or occlusal interference. These signs and symptoms are discussed and analyzed in this article. Conclusion: Treatment management and a specific examination protocol are provided. World J Orthod 2001;2:56–68.

From the pathologic, we learn much about the normal. (Graber)

Data identification with respect to the chronic joint childhood illness called juvenile rheumatoid arthritis (JRA) is extremely important for treatment outcome. JRA is an autoimmune and systemic joint disease marked by inflammation, degeneration, or metabolic derangement of connective tissue. Its etiology is unknown and the onset occurs in children and adolescents less than 16 years of age.¹–⁶

Anterior open bite is a JRA consequence, usually treated by selective grinding and provisional prosthetic rehabilitation.⁷ Sometimes, a stabilization splint is indicated to prevent parafunctional activity during sleep and physical therapy. Such treatment provides temporomandibular joint (TMJ) stability and more comfortable mandibular dynamics during the day.

However, functional orthopedics is an excellent option for relieving pain and stiffness and enhancing morphofunctional considerations in properly chosen patients. It is a proper early treatment alternative for reducing open bite, eliminating compensatory tongue and perioral habits, improving chewing performance, and achieving a satisfactory esthetic appearance. Functional appliances, particularly the bioelastic type,⁸ can be an indispensable tool in the therapeutic armamentaria. With these appliances it is possible to change the posture and growth direction of the mandible without any sagittal translation.⁸

Posterior morphologic growth rotation, retrognathism, micrognathia, and microgenia are common JRA sequelae, depending on the age of onset and the spontaneous exacerbation and remission periods.¹–³,⁶ After functional orthopedic treatment, genoplasty may satisfy a patient’s esthetic demands without the need for orthognathic surgical mandibular advancement.

Initial diagnostic criteria for JRA are persistent morning stiffness, pain and limitation on motion, tenderness, joint warmth, swelling, and effusion in one or more joints for at least 6 to 12 weeks.¹⁷ Before making a JRA diagnosis, more than 100 other causes of chronic arthritis in children and adolescents under 16 years of age must be excluded.⁴ The results of anamnesis, physical examination, and laboratory findings, the main bases for JRA diagnosis,¹ must be readily available in an easy-to-read format. In addition, the findings should include data essential for functional appliance selection, fabrication, and control of the effects of JRA orofacial signs and symptoms.

³Private Practice of Orthodontics, São Paulo, Brazil.

REPRINT REQUESTS/CORRESPONDENCE
Dr W.A. Simões, Avenida Faria Lima 2894/conj. 54, São Paulo, CEP 01452-002, Brazil. E-mail: wilmasimoes@uol.com.br
Since JRA is an organic disease, that is, "an illness caused or accompanied by structural changes in a body organ or tissue," the examination protocol must provide a means for continuous observation and interpretation of relevant changes.

The purpose of this paper is to present a JRA examination protocol, illustrated by a case report. The patient was treated with functional orthopedics and genoplasty (Figs 1 to 9). Some specific details will be highlighted to stimulate further research.

JRA EXAMINATION PROTOCOL

The examination protocol consists of three areas. The first focuses on the general rheumatoid arthritis status. This is furnished by a multidisciplinary diagnostic group of rheumatology, ophthalmology, otorhinolaryngology, orthopedics, endocrinology, physiotherapy, etc. The classification of five groups seen within this area is optimal in correlating JRA with the TMJ, muscles, and dental area involvement.

The second area of the protocol focuses on head and neck signs and symptoms regarding the TMJ and muscles. A finding of four of the following signs and symptoms indicates TMJ local involvement in a patient who has been diagnosed with JRA: bilateral involvement; posterior or lateral joint tenderness; crepitus or cortical bone erosion, identified by imaging, swelling, warmth in or over the TMJ in the acute phase, and temperature reduction in the chronic phase; anterior open bite; and polymorphonuclear or mononuclear leukocytosis in the TMJ fluid, corresponding to acute and chronic phases, respectively.

Signs of painful TMJ degenerative arthritis often parallel lateral pterygoid tenderness on the same side. However, the anatomically deep location of lateral pterygoid muscles makes palpation impossible. Functional manipulation of the mandible can facilitate assessment of the lateral pterygoid muscles. Place the thumb on the chin in protusive movement; if pain results beneath and deep in the zygomatic arch, the finding is positive.

Another test can be performed to diagnose atlantoaxial subluxation. Place the thumb on the axis spinous process in the suboccipital region with the head in the flexion posture, and with the other hand, push the forehead backward. In the JRA patient, it is possible to feel at least a 3-mm gap, which can be seen clearly on lateral radiographs in flexion and extension positions.

The rich synovial fluid at C1 and C2 is strongly affected by JRA. As a rheumatic disease, JRA causes upper cervical instability when it is active for a long period. Atlantoaxial dislocation is present in 40% of JRA patients. The cricoarytenoid joint may also be affected, causing swallowing, throat, and voice problems as well as referred otalgia.

The third area of the protocol is related specifically to the dental area, including imaging and coordination of different ages.

Interocclusal distance measurement. Occlusograms or bite registrations are periodically taken with thermoplastic impression material. The material is placed consecutively between posterior and anterior dental arch segments in forced occlusion and maximal intercuspation. A caliper is used to measure the lateral and anterior open bite on the occlusograms at different dental levels.

Masticatory functional angle of Planas (MFAP) evaluation. The lateroprotrusive movements are recorded in a manner similar to a Gothic arch tracing except on a frontovertical instead of a horizontal plane. This tracing is easily taken and clinically useful. While the patient describes these movements, a pencil positioned between the maxillary and the mandibular central incisors produces the MFAP tracings. Harmonious tracings have equal right and left inclination and size marked on the mandibular central incisors.

Simões protrusion movement analysis. Physiological protrusion is a symmetrical, straightforward movement with incisors in contact until edge-to-edge protrusion. Basically, this is free protrusion. Although incisor contact may exist, it alone does not prove a physiologically free protrusion; a straightforward trajectory after edge-to-edge position is also necessary. Protrusion beyond edge-to-edge should take a slightly oblique upward vector. In short, physiological free protrusion approximately follows the Posselt envelope.

Abnormal protrusion movement is downward, deviated from physiological trajectory, and the space between the anterior teeth is increased. There are five types of abnormal or "broken" protrusion (Fig 10):

1. **Compound:** Initially straightforward movement becomes downward movement.
2. **Simple tumbled:** The "break" occurs from the beginning.
3. **Double tumbled:** There is a "break" at the beginning, which is interrupted by a straightforward path and again "breaks" in a tumbled manner.
4. **Stepped:** Movement is normal at the beginning and at the end. It is initially straightforward but changes to a downward vector in between.
5. **Broken L:** Protrusion begins as tumbled and continues as horizontal. It resembles part of the double tumbled broken protrusion category.
Fig 1 July 24, 1991 (age 13 years, 2 months): (a) Frontal view. (b) Radiograph. (c) Profile view.

Fig 2 Intraoral views of patient at age 13 years, 2 months.

Fig 3 Intraoral views with the appliance placed. Patient age was 16 years, 2 months.
Fig 4 July 1, 1999 (age 21 years, 3 months): (a) Frontal view. (b) Radiograph. (c) Profile view.

Fig 5 Intraoral views of patient at age 21 years, 3 months.

Fig 6 (a) Transcranial imaging of right side with open and closed mouth. (b) Transcranial imaging of left side with open and closed mouth.

Fig 7 Articular compass tracing. Morphological age analysis was 13 years, 1 month.
Fig 8 (a) Foot radiograph. (b) MRI showing the disc replaced by fat.

Fig 9 July 1, 1999: (a) Mouth profile. (b) Maximal protrusion movement of simple tumbled type of broken protrusion.

Fig 10 Types of broken protrusion: (a) compound, (b) simple tumbled, (c) double tumbled, (d) stepped, (e) broken L.
Juvenile Rheumatoid Arthritis: Examination Protocol

Patient Case Report

Name: O. B. N.
Address:
Zip Code:
City/State:
Country: Brazil
Phone:
Fax:
E-mail:
Birth date: 24/03/78
City/State: /São Paulo
Nationality: Brazilian

PART I

Age: 13 y 4 mo
Sex: M
Race: white
Ethnic group:
Age of JRA onset: 5 y 6 mo
Since: 6 mo
1 y
within first 5 y
more than 5 y X

JRA stage: I early
II moderate
III severe X
IV terminal
Westergren erythrocyte sedimentation rate (ESR): above 20 mm/h X 39 mm
below 20 mm/h
Lymphadenopathy ¥ N
Nodes: No
Nodules: No

Leukocytosis ¥ N
Leukopenia ¥ N
White blood cell count: 7,000/mm³

Anemia ¥ N
Antinuclear antibodies (ANA) ¥ N
RF: No
RFn: Yes
HLA-DR5:
- DRB:

Endocrine diseases: No
Metabolic diseases: No

Exocrine diseases:
Eyes:
Lungs:

Joint deformities: fingers X
hands X
feet X
wrist X
shoulders X
hips
knees
ankles X
TMJ

TMJ deformities: after other joints ¥ N
before other joints ¥ N
all together ¥ N
Joint warmth:

Ankylosing spondylitis ¥ N
Cricoarytenoid joint changes ¥ N

Others: Medicinal gastric hemorrhage 10 y of age; Gl bleeding: loose stools (about every 2 mo)

General physical examination: Normal

Observations: Anisocytosis; initially JRA involved knees (5 y 6 mo); has spread to involve TMJ, fingers, left elbow, neck, ankles and feet; tarsal osseous fusions in the left ankle; moderate knock-knee deformity; swelling in both knees

Subtype group

1st Polyarticular: (PO, seropositive for RF) ¥ N
TMJ ¥ N
symmetric ¥ N
ANA ¥ N

2nd Polyarticular: (PO, seronegative for RF) ¥ N
TMJ ¥ N
symmetric ¥ N
ANA ¥ N

3rd Polyarticular Type I: iridocyclitis ¥ N
TMJ ¥ N
symmetric ¥ N
ANA ¥ N

4th Periarticular Type II: iridocyclitis ¥ N
sacroiliitis ¥ N
TMJ ¥ N
symmetric ¥ N

5th Systemic-onset JRA or Still's disease: Knees, hands, feet, left elbow, ankles, neck, TMJs; until 7 y: pharyngitis, amygda litis, otitis, staphylococcus infection. At 7 y of age, it was noted the micrognathia, anterior open bite and opening limitation

History & time related

Family inflammatory diseases occurrence: Sacroiliitis and arthritis

Pericarditis:

Systemic infection: 1 y 4 mo dehydration followed by intestine, blood, and throat infection

Trauma: No

Psychological stress: Occasional

Sleep disturbances: Body position difficulties
Persistent arthritis of 6 weeks duration in one or more joints: Y N
When diagnosed with JRA: 5 y 8 mo
Start of JRA treatment: 5 y 8 mo
JRA onset subtypes: early childhood X childhood □ late childhood □
prepubertal □ pubertal □
Associated diseases: It seems quite possible psoriatic arthritis given the nail pits and somewhat suspicious lesion in the umbilicus
Exacerbation periods: mild □ moderate □ severe □
Remission periods: partial □ complete □

Treatment
Medicines: Naprosyn, Trolovol (penicillin), Flagil, Anador, Ridaura (Au), AAS; currently Methotrexate orally 7 mg/wk plus nonsteroidal agents
Physiotherapy: For hands; ankle and knee stretching exercises
Psychology: No
Surgery: No

Chief complaints & time related
Fever: Often present with high infections
Fatigue: general Y N when: Mainly walking □ jaws Y N when: Chewing □
Daily behavior limitations: Sports, except swimming
Disability: Trouble with hand function, particularly in writing; often unable to make a fist
Weight loss: Y N since: ________ periods:
Growth disturbances: Lumbar kyphosis and striking micrognathia
Sore throat: Y N Rash: Y N trunk X upper arms □ others:
Headache:
Tooth pain:
Face pain: Zygomatic and gonial angle region Neck pain, rash Y N
Myalgia, rash Y N
Otalgia Y N Ear noises Y N Odynophagia Y N Throat fullness feeling Y N
Athralgia: Y N 4 or fewer joints Y N pauciarticular onset Y N
5 or more joints Y N polyarticular onset Y N
Morning stiffness: Y N greater than 30 min Y N 3 hours
Visceral pain: Y N hepatomegaly Y N splenomegaly Y N
Others: Anterior chest pain, not related to breathing
Exacerbation: mild □ moderate X severe □ with: Stress, walking, writing
Remission: not always X always □ partial X complete □ with: Medicines and physiotherapy

Observations: Stiffness, by evening has loosened up enough so that he can run

PART II: SPECIFIC TMJ CRITERIA (RECORDED BY CLINICIAN)
Auricular region pain: front X back X upper □ lower □
Palpatory joint tenderness: laterally R L posteriorly R L
Crepitus: palpable ☑️ audible ☑️ swelling ☑️ rash ☑️

Clicking: ☑️ opening ☑️ closing ☑️ early ☑️ middle ☑️ end ☑️

Pain occurrence: on waking ☑️ late in the day ☐ at night ☐ when eating ☑️

before eating ☑️ after eating ☐ stress ☑️ opening ☑️ jaw resting pain ☑️

Pain frequency: constant ☑️; intermittence:

Pain duration:

Pain sensation: sharp ☐ throbbing ☑️ burning ☐ dull ☑️

Pain intensity: mild ☐ moderate ☑️ severe ☐ visual analog scale (VAS): 6

Referred pain: Mainly temporal region

Irradiating pain:

Morning stiffness: ☑️ more than 30 min ☑️ Ankylosis: ☑️

Loss of function: ☑️ which one: Impaired chewing

Surrounding muscle ache: Masticatory muscles

Observations: Able to chew only soft food and soup

Specific muscles tenderness criteria

Temporal insertion ☑️ Anterior ☑️ Posterior ☐ SCM ☑️

Trapezius ☑️ Lateral pterygoid ☑️ Medial pterygoid ☑️ Superficial MSS ☑️

Deep portion ☑️ Posterior digastric ☑️

Pain behavior

Worse in the morning and diminishes throughout the day ☑️;

Worse as the day progresses ☑️; May also occur depending on the activity

Pain: temporal region ☑️ angle of jaw ☑️

Specific neck criteria

Symptomatic: ☑️ Neck pain ☑️ Back pain ☑️

Neck pain location: front ☐ back ☑️ upper ☑️ lower ☑️

Pain occurrence: on waking ☑️ late in the day ☐ at night ☐ when eating ☑️

before eating ☑️ after eating ☑️ stress contributes ☑️

Neck stiffness ☑️

Pain frequency: constant ☑️; intermittence:

Duration: more than 1 block

Use-associated pain: Position maintenance; walking

Night sweats: ☑️ Pain abruptness onset: ☑️

Pain relief with: Medicines and physiotherapy

Occipital or suboccipital headache ☑️ Deep suboccipital area tenderness ☑️

Movements of neck that produce headaches ☑️ and alter headaches ☑️

FHP ☑️ LHP asymmetry ☑️ Restriction in motion ☑️

Pain and limitation in neck range of motion ☑️

Diminished sensation, pain, or numbness radiating to the neck, suboccipital head, shoulder, or arm:

No

Head flexion produces sharp pain ☑️ Transverse ligament weakening ☑️
Flexion does occur between 45 and 55 degrees ☑ ☑ smaller ☐ larger ☐
Extension does occur around 70 degrees ☑ ☑ - ☑ ☑ smaller ☐ larger ☐
Rotation does occur between 80 and 85 degrees ☑ ☑ - ☑ ☑ smaller ☒ larger ☐
Lateroflexion does occur around 45 degrees ☑ ☑ - ☑ ☑ smaller ☒ larger ☐
Gap between atlas and odontoid process clinical examination: ☑ ☑
Bony fusion:
Shoulders: Severe forward posture
Observations: Slight limitation of external rotation of the left shoulder

PART III: SPECIFIC DENTAL AREA CRITERIA

Open bite: 5 mm ☑ Overbite: ☑ Overjet: 5 mm ☑ Backward chin ☑ ☑
IOD-L side: incisive: 3 mm; canine: ___ mm; premolar: ___ mm; molar: ___ mm
IOD-R side: incisive: 2 mm; canine: ___ mm; premolar: ___ mm; molar: ___ mm
Opening according to age ☑ ☑ Opening: Increased pain at 27-33 mm
Range of jaw motion: RL decreased ☑ ☑ LL decreased ☑ ☑
Masticatory functional angle: ☑ ☑ smaller ☒ larger ☐
Physiological free protrusion: ☑ ☑ Pain ☑ ☑
Broken protrusion type: 1 2 3 4 5 7 mm pain ☑ ☑
Dental size: SI 7997 SI 65, 55, 56 LS 19 LI 15 4 4 34 6 6 4 4
Dental size: SI 7997 SI 65, 55, 56 LS 19 LI 15 4 4 34 6 6 4 4
Shape: ☑ ☑ Number: ☑ ☑
Sn-O: 6.8 cm Sn-Gn: 6.3 cm T-O: 7.9 cm T-Sn: 9.4 cm T-Td: 13 cm T-Te: 12 cm
MIC achievement difficulty ☑ ☑ Pain ☑ ☑ Yawning opening pain ☑ ☑
Talking difficulty ☑ ☑ Talking pain ☑ ☑ Hoarseness ☑ ☑
Opening deviation occurrence at mm; to ☑ ☑ side MLD ☑ ☑
Dental deviation: Jaw deviation: To left ☑ ☑ Asymmetric growth ☑ ☑
Closing pain ☑ ☑ Missing teeth: No ☑ ☑ Molar key: ☑ ☑ L L I
Grinding ☑ ☑ Clenching ☑ ☑ Unilateral chewing ☑ ☑
Biting on: cheek ☑ ☑ lip ☑ ☑ tongue ☑ ☑
Abrasion: ☑ ☑ Periodontal health status: poor ☐ ☑ good ☑ optimum ☐
Dental health: poor ☐ ☑ good ☑ optimum ☐
Observation: Upper canine lack of space; lower crowding; no eruption curve problems; jaw occasionally locks on the right side, during opening and closing

Legend: Sn = subnasal; Gn = gnathion; O = orion; T = tragus; Td = right side tragus; Te = left side tragus; MLD = medial line deviation.

Imaging modality selection
Orthopantomography ☑ Transcranial ☑ Transmaxillary ☑ Transpharyngeal ☐
Periapical ☑ Tomography ☑ CT ☑ MRI ☑ Scintigraphy ☑
Cephalometric radiographs: lateral projection ☑ frontal projection ☑

JRA imaging profile
Micrognathia ☑ ☑ Accentuated notch ☑ ☑ Symmetric ☑ ☑
Deepened antegonial notch side ☑ ☑ Articular space: ☑ ☑ increased ☑ ☑ decreased ☑
Condyle irregular surfaces: anterior ☐ ☑ medial ☑ ☑ Condyle erosion: complete ☑ partial ☐
Subchondral cyst ☑ ☑ Bony sclerosis ☐ ☑ Osteophytes ☑ ☑
Condyle form: mouthpiece of the flute □
Glenoid fossa irregular surface □ Glenoid fossa erosion: complete □ partial □
Articular eminence flattening □ Articular eminence irregular surfaces □
Articular eminence erosion □ Disc: □ N replaced by fat or proliferating tissue □ □
Cephalometric radiographs lateral projection: 13 y 1 mo
Gonial angle (Ar-Go-Me): 139 degrees
Upper/Lower gonial angle (Ar-Go-N/N-Go-Me): 47/92 degrees
Mandibular corpus length (Go-Me): 56 mm
Posterior ramus length (Ar-Go): 35 mm
Ramus diagonal length (Cp-Go): 50 mm
Mandible diagonal (Co-Gn): 96 mm
Symphyseal width (Symp-Po): 15 mm
Articular compass - VL: 9M/1 (13 y 1 mo)
Biotypological relation analysis: Al 5/8 8/8 D/L L +c -r
Facial soft tissue: Po’-SNV: -28.9 mm; mean: -3.5 mm
Observations: Throat angle: 142.6 degrees and mean = 106.0 degrees; Po-NV: -24.1 mm and mean = -7.0 mm; disc replaced by fat tissue

Legend: M = mesial; Al = gnathostatic profile A large; D = dolichoprospic; L = leptoprospic;
c = cooperation; r = reaction to treatment.

Age coordination
Chronological: 13 y 4 mo Height: 1.47 m Weight: 52 kg Skeletal: 13 y
Vertebral (10 to 15 y): harmonious □ accelerated □
Skeletal open bites and posterior crossbites may have aberrant pronunciation patterns caused by occlusal and/or TMJ morphology or muscular interference. Trauma may cause vascular impairment that temporarily provokes an avoidance type of pronunciation. Protrusive occlusal posterior interference can produce painful muscles and parafunctional activity. Many severe skeletal crossbites have compound or stepped broken pronusions. Simple or double tubular pronusions are frequently seen in mesioclusion, with posterior skeletal crossbite.

JRA patients with complete or partial advanced condyle destruction usually have simple tubular broken pronusions. JRA patients commonly have a shorter protrusive motion in remission periods and may not protrude in active periods when fibrosis and condylar destruction are being exacerbated.

Simões deviation in form (DIF) and deviation in position (DIP) analysis. Dental and jaw position deviation, plus incipient or advanced asymmetric growth identification, are obtained from the orthopantomographs, chewing side test, and gnathostatic and calceigraphic tracings. These exams are related to the presence or absence of clinical midline deviation.

JRA imaging profile and age coordination

Age coordination is detected on radiographs, along with other diagnostic criteria such as the hormone laboratory analysis for pubertal age assessment commonly provided by the physicians responsible for the JRA patient. Physical examination provides height and weight curves used to evaluate height age. The other three age categories—skeletal, vertebral, and dental—require radiographic examination. Skeletal age is analyzed by hand-wrist radiographs; vertebral age by the lateral cephalometric radiograph; and dental age by orthopantomography.

Dental age may be assessed according to tooth formation and eruption and mandibular dynamics maturity. For JRA patients, assessment of the latter is especially important at the active peaks, that is, between ages 2 to 4 and 8 to 12 years.

Although the patient may recover from the disease satisfactorily during puberty, the ultimate consequences of irreversible structural changes on the patient's functional processes may determine treatment limitations.

Simões structural articular compass analysis. This is a cephalometric analysis to diagnose skeletal or nonskeletal malocclusions with accentuated vertical growth. Clinically, these malocclusions are related to type of pronunciation. Other complementary cephalometric analyses can also be useful.

It has been shown that skeletal open bite patients with a broken pronunciation have a less favorable prognosis than do patients with other types of pronunciation. They also have a gonial angle (articulare-gonion-menton) greater than or equal to 135 degrees. Also present in these patients is a lower part of the gonial angle, nasion-gonion-menton, greater than or equal to 76 degrees.

Constructed gonion is the most distal point of the tangent to the lower border of mandible corpus. JRA patients can have severe antegonial notching or a pronounced lower border curvature, which results in even smaller body length measurements.

This measurement criterion describes a shorter corpus and a longer ramus, which consequently leads to a greater gonial angle concern. When these proportions are found, it is important to check for the beginning or the aggravating conditions of jaw deformity. As the disease progresses, one of the crippling effects is a loss of condylar height. Near-total bilateral destruction of the condylar processes can occur.

The important consideration is not the high gonial angle but the compensatory growth and structural disposition of the parts that should be proportional to the whole craniofacial complex. Harmonious growth is not based on size but on proportion, which allows optimal function of the stomatognathic system. The upper part of the gonial angle indicates ramus obliquity and the lower indicates corpus obliquity. Both have an influence on the downward and forward symphysis projection.

In JRA patients, symphysis width can still have favorable dimensions in relation to the distocclusion. However, mandible morphology is not favorably responsive, as it may be in other cases, because the rules are different. Downward symphysis deviation and increased antegonial notching aggravates the lack of proportionality.

A shorter ramus indicates the likelihood of a poorer prognosis for open bite correction. Therapeutic efforts are severely compromised in cases of JRA where condylar structure is jeopardized by partial or complete destruction.

Another valuable cephalometric criterion is the ramus diagonal. The ramus diagonal measurement is between the superior point on the outline of the coronoid process and the gonion (Cp-Go) (see Fig 7). The vestibular-lingual (VL), so called because it signifies both the surfaces of teeth or of mandibular bone, is a landmark at the crossing lines of the circles of the arches, with the center on Cp and Go, one at a time, and the distance Cp-Go as the radius.
Mandibular positions and movements significantly improve the value of dental age assessment. Tooth formation and emergence are of limited value if considered alone. Vertical dental support zones are associated with intercuspation.

Functional orthopedic JRA treatment is not indicated before the fourth or fifth dental development stages, at 6 to 7 years of age, when the first permanent molars are fully erupted and deciduous anterior teeth shedding is occurring.

The sixth mandibular dynamic development stage, at 7 to 8 years of age or later, is mainly characterized by the permanent incisor eruption. In the seventh stage, around 9 to 10 years, the main maturity indicator is mandibular incisors contacting antagonists. This vertical dental support zone is reinforced by the support on the first permanent molars. The deciduous canine and molar shedding allows the first permanent molars to migrate mesially. Anterior open bite in JRA patients may be present at this time, and therefore proper jaw motion cannot be established, including the anterior protrusive guidance physiological pattern.

The eruption of the premolars and permanent canines during the eighth stage, combined with the permanent second molar eruption, brings an active period. This occurs after patients reach 12 years of age. JRA patients usually show heavy nonphysiological attrition on the first permanent molars.

In the ninth stage, when patients are around 13 to 14 years of age, all teeth except the third molars have erupted. In the tenth stage, at approximately 16 to 17 years of age, the number of dental antagonist contacts normally increase at maximal intercuspation, but this does not occur in JRA patients. Depending on the disease activity, an open bite may become worse.

Although coincident with a remission period, the neuroendocrinological character of puberty is not favorable. During puberty, JRA has a long activity period beyond the initial assault, enough to cause many growth aberrations. If the condyles are destroyed, it is even more difficult to obtain any maxillomandibular growth adjustment. Growth compensation that normally happens in puberty is not sufficient to cover the devastating effects of JRA.

The eleventh stage of development, at 18 to 19 years of age, is of utmost importance for the maturation of lateroprocessive movements. The range of motion normally reaches stability, based on more amplified mature occlusal antagonistic contacts and on a better anterior guidance disposition.

At approximately 20 years of age, the twelfth stage, all dimensional resultants in transverse, vertical, and sagittal vectors have produced a circular...
morphological growth movement. This is known as the growth rotational phenomenon, making up part of the natural growth in sagittal and transverse dimensions. In JRA, the result of rotational growth in a downward and backward posterior direction, without the proper maturation of lateroprotrusive and protrusion movements, can be aggravated.

CONCLUSION

Surprisingly, response to treatment may be more favorable with bioelastic functional appliances. They have smaller areas in contact with oral structures, inducing the most convenient change of posture. This provides some relief of symptoms as well as TMJ unloading.

Performing an examination every 6 months following this protocol is advisable for documenting structural changes, the disease status, and treatment outcome. While reading the examination protocol, refer to the case report illustrations. Note, in Fig 4, the structural changes in cervical vertebrae; in Figs 6a and 6b, the condylar destruction at 13.1 years of age; in Fig 8a, the foot deformities; and in Fig 8b, the disc replaced by fat at 13.3 years of age. A blank JRA examination protocol form is included in the online version of this journal (http://www.quintpub.com).

REFERENCES